In Vitro Investigation into Plasmonic Photothermal Effect of Hollow Gold Nanoshell Irradiated with Incoherent Light
Authors
Abstract:
Introduction: Hollow gold nanoshells (HAuNS) are one of the most attractive nanostructures for biomedical applications due to their interesting physicochemical properties. This study sought to evaluate the plasmonic photothermal effect of HAuNS irradiated with incoherent light on melanoma cell line. Materials and Methods: After the synthesis of nanostructures, the temperature changes of HAuNS and polyethylene glycol stabilized HAuNS (HAuNS-PEG) were evaluated at different irradiation dose levels. After determining the potential cytotoxicity of the agents, the DFW cells were irradiated by incoherent light with and without the nanostructures at different exposure doses with two spectral bands of 670±25 nm and 730±25 nm. Finally, the rate of the cell survival was determined by 1-Methyltetrazole-5-Thiol assay 24 h after irradiating. Results: The HAuNS, HAuNS-PEG, and light exposure did not have any significant effect on the cell survival, individually. Stabilizing with PEG led to an increase in size and decreased their polydispersity index, zeta potential, and conductivity. The slopes of temperature and cell death caused by 730 nm were greater than 670 nm when the cells were irradiated in the presence of nanostructures. These changes became more significant with increasing the dose of exposure and HAuNS (or HAuNS-PEG) concentration. The lowest cell survival occurred in the concentration of 250 μg/ml of nanostructures and an exposure dose of 9 min (P
similar resources
Modified Photochemical Properties of Mitoxantrone by Plasmonic Photothermal Response of Hollow Gold Nanoshells
Introduction: Mitoxantrone (MX) has been introduced as a photosensitizer drug. However, due to some side effects, the widespread use of this drug has been confronted with some limitations. Hollow gold nanoshells (HGN) have attracted considerable attention due to their interesting photochemical features that can use as nanocarrier. In this paper, the thermal response of MX and the use of this pr...
full textSynthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy
Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...
full textPhotothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study.
Moderate hyperthermia (MHT) has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of commonly used chemotherapeutic agents with MHT induced by near-infrared (NIR) activation of gold nanoshell (AuNS)-loaded macrophages (Ma). AuNS-loaded murine Ma combined with human FaDu squamous cells, in ...
full textPhotothermal therapy of cancer cells using novel hollow gold nanoflowers
This article presents a new strategy for fabricating large gold nanoflowers (AuNFs) that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR) light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanopa...
full textThe Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments
The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR siz...
full textTowards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles
Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulat...
full textMy Resources
Journal title
volume 15 issue 3
pages 161- 168
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023